International Congress of the Croatian Society of Biochemistry and Molecular Biology

September 28 to October 1, 2022 | Brela | Croatia

GC-MS BASED COMPARATIVE ANALYSIS OF MDA-MB-231 AND MCF-7 CANCER CELLS TREATED WITH NOVEL THIENO[2,3-b]PYRIDINE DERIVATIVE

<u>Mila Radan</u>, Vedrana Čikeš-Čulić, Sandra Marijan, Matij Pervan, Luka Mejić

P67

DETECTED CNV HOTSPOTS AS POTENTIAL SEMINOMA BIOMARKERS FROM SEMINAL PLASMA

<u>Dora Raos</u>, Irena Abramović, Miroslav Tomić, Alen Vrtarić, Tomislav Kuliš, Monika Ulamec, Ana Katušić Bojanac, Davor Ježek, Nino Sinčić

P68

AUTOMATION OF IgG N-GLYCAN SAMPLE PREPARATION METHOD FOR HIGH THROUGHPUT ANALYSIS

<u>Borna Rapčan</u>, Jelena Šimunović, Maja Hanić, Branimir Plavša, Jerko Štambuk, Gordan Lauc, Genadij Razdorov

P69

CARCINOGEN METABOLISM BY THE GUT MICROBIOTA TRIGGERS BLADDER CARCINOGENESIS

<u>Blanka Roje</u>, Boyao Zhang, Eleonora Mastrorilli, Ana Kovačić, Lana Sušak, Elena Ćosić, Katarina Vilović, Emilija Lozo Vukovac, Antonio Meštrović, Željko Puljiz, Ivana Karaman, Michael Zimmermann, Janoš Terzić

P70

CONTRASTING EFFECT OF EVOLUTIONARY CONSERVED CYSTEINES ON THE STABILITY OF PLANT SERYL-tRNA SYNTHETASE

Valentina Ević, Ružica Šoić, Dubravka Matković-Čalogović, Ita Gruić Sovulj, Ivana Kekez, <u>Jasmina Rokov Plavec</u>

P71

INITIAL CHARACTERIZATION OF MECHANISMS CONFERRING SUBSTRATE SPECIFIC VARIATION IN OCT1*2 ACTIVITY

Sarah Römer, Tina Seitz, Marleen J. Meyer, Mladen V. Tzvetkov

P72

GENETIC ASSOCIATION STUDY OF PLASMA PROTEOME AND IgG N-GLYCOSYLATION SUGGESTS IMPORTANCE OF N-GLYCOSYLATION AND COMPLEMENT SYSTEM AT THE ONSET OF TYPE 1 DIABETES

<u>Najda Rudman</u>, Simranjeet Kaur, Vesna Simunović, Domagoj Kifer, Lucija Klarić, Flemming Pociot, Grant Morahan, Olga Gornik

P73

N-GLYCOSYLATION OF IgA IN TYPE I DIABETES MELLITUS IN CHILDREN

<u>Sofia Shkunnikova</u>, Matej Nemčić, Najda Rudman, Domagoj Kifer, Flemming Pociot, Grant Morahan, Olga Gornik

18 Congress of the Croatian Society of Biochemistry and Molecular Biology

P74

DNA METHYLATION AND PROTEIN EXPRESSION OF APC GENE IN PROSTATE CANCER PATIENTS

Irena Abramovic, Ivan Pezelj, Tomislav Kulis, Ana Katusic Bojanac, Monika Ulamec, Stela Bulimbasic, <u>Nino Sincic</u>

P75

TOLL-LIKE RECEPTOR 2 DEFICIENCY IS ASSOCIATED WITH SPECIFIC ALTERATIONS OF SYNAPTIC PROTEOME

<u>Mario Stojanović</u>, Thilo Kahne, Borna Puljko, Katarina Ilić, Kristina Mlinac Jerković, Marina Radmilović, Dinko Mitrečić, Karl-Heinz Smalla, Svjetlana Kalanj Bognar

P76

ROLE OF $\alpha\text{-}ACTININs$ IN $\alpha V\beta 5$ FA MATURATION, ACTIN ORGANISATION AND MIGRATION IN MELANOMA CELL LINE RPMI-7951

<u>Nikolina Stojanović</u>, Anja Rac, Marija Tomić, Ana Tadijan, Jonathan D. Humphries, Martin J. Humphries, Andreja Ambriović-Ristov

P77

RHODANINE DERIVATIVES AS POTENT MUSHROOM TYROSINASE INHIBITORS

Melita Lončarić, Ivica Strelec, Maja Molnar

P78

PALINDROME-INITAITED GENOME INSTABILITY IN EUKARYOTIC CELLS Marina Svetec Miklenić, Nikolina Gatalica, Ivan Krešimir Svetec

P79

PREPARATION OF AMINO ACID-FUNCTIONALIZED CARBON QUANTUM DOTS USING CLEMENTINE PEEL – POTENTIAL APPLICATION IN BIOMEDICAL ANALYSIS AND AS FLUORESCENT PROBE FOR Fe³⁺ DETECTION

<u>Silvija Šafranko</u>, Ivica Strelec, Maja Dutour-Sikirić, Igor Weber, Maja Herak Bosnar, Petra Grbčić, Sandra Kraljević Pavelić, Aleksandar Széchenyi, Kristina Janđel, Monika Kovačević, Stela Jokić

P80

BIVALVES DISCLOSE NOVEL PATTERN OF SATELLITE DNA ORGANIZATION, HIGHLY DISPERSED AND CLOSELY CONNECTED TO HELITRON MOBILE ELEMENTS

<u>Eva Šatović Vukšić</u>, Monika Tunjić Cvitanić, Juan J. Pasantes, Daniel García Souto, Tonči Cvitanić, Miroslav Plohl

P79

PREPARATION OF AMINO ACID-FUNCTIONALIZED CARBON QUANTUM DOTS USING CLEMENTINE PEEL – POTENTIAL APPLICATION IN BIOMEDICAL ANALYSIS AND AS FLUORESCENT PROBE FOR Fe³⁺ DETECTION

<u>Silvija Šafranko</u>¹, Ivica Strelec¹, Maja Dutour-Sikirić², Igor Weber³, Maja Herak Bosnar⁴, Petra Grbčić⁵, Sandra Kraljević Pavelić⁶, Aleksandar Széchenyi⁷, Kristina Janđel⁸, Monika Kovačević⁸, Stela Jokić¹

¹Faculty of Food Technology Osijek, University of Osijek, Osijek, Croatia; ²Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia; ³Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia; ⁴Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia; ⁵Department of Biotechnology, University of Rijeka, Rijeka, Croatia; ⁶Faculty of Health Studies, University of Rijeka, Rijeka, Croatia; ⁷Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary; ⁸Department of Chemistry, University of Osijek, Osijek, Croatia

Luminiscent carbon quantum dots (CODs) are widely known as zero-dimensional nanomaterials which have attracted extensive attention, especially in green chemistry and biomedicine. Due to their excellent biocompatibility and low toxicity, water solubility, stability in high ionic media and great optical properties, CQDs have been widely used as functional optical materials in fluorescence sensing. In this study, preparation and modification of CODs using clementine peel as carbon precursor and amino acids with different chemical complexity (glycine and arginine - nitrogen dopants) has been presented. It has been demonstrated that increasing nitrogen content in CQDs samples has increased the quantum yield percentage of prepared CQDs. Some differences in sample properties were observed regarding structural and chemical diversity, biological and antioxidant activity. The antiproliferative effect of COD@Gly against pancreatic cancer cell lines (CFPAC-1) was demonstrated. Based on the DPPH assay results, the CQD@Arg demonstrated the highest antiradical activity 81.39 \pm 0.39%, and EC₅₀ was determined to be EC₅₀ = 53.78 \pm 0.97 µg/mL (R² = 0.9357). Furthermore, due to the highest determined quantum yield, COD@Arg sample was further used for the ion sensing and cellular imaging of cancer cells. The CQD@Arg was applied as a fluorescent nanoprobe for Fe³⁺ detection, with a good linear correlation in the concentration range from 7.0 μ mol dm⁻³ to 50.0 μ mol dm⁻³ with R² = 0.9931 and limit of detection (LOD) of 4.57 \pm 0.27 μ mol dm⁻³. In order to investigate the applicability of prepared CQDs in cell imaging, MCF-7 cells were incubated with CQD@Arg and imaged by confocal microscopy. This study implies the potential application of the prepared CODs in bioimaging and ion sensing, and also as a fluorescent probe with diverse biological and pharmacological activities in general. This work has been supported by Croatian Science Foundation under the project "Application of innovative techniques of the extraction of bioactive compounds from by-products of plant origin" (UIP-2017-05-9909). We would like to thank also to Sugato Haira and professor Hoe-Joon Kim for the XRD and EDS measurements (supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science and ICT of Korea (2021R1C1C1011588)). The authors thank Daniel Berkesi (University of Szeged, Hungary) for the HR-TEM measurements.

P80

BIVALVES DISCLOSE NOVEL PATTERN OF SATELLITE DNA ORGANIZATION, HIGHLY DISPERSED AND CLOSELY CONNECTED TO HELITRON MOBILE ELEMENTS

<u>Eva Šatović Vukšić</u>¹, Monika Tunjić Cvitanić¹, Juan J. Pasantes², Daniel García Souto^{3,4}, Tonči Cvitanić⁵, Miroslav Plohl¹

¹Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia; ²Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, Vigo, Spain; ³Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; ⁴Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Spain; ⁵Rimac Automobili d.o.o., Sveta Nedelja

Several features have already gualified commercially and ecologically important bivalve species from the family Ostreidae as valuable nonstandard model organisms, confirmed by an exponentially increasing number of genome sequencing projects and genome research on this group of organisms. The ubiquitous and in the same time still the least understood DNA components of every eukaryotic genome are repetitive DNA sequences. They cause significant technical problems in DNA sequencing and assembly and frequently are omitted or underrepresented in genome assemblies, consequently being called the "dark matter of the genome". Repetitive DNA sequences are divided into two major groups, satellite DNAs (satDNAs) composed of sequences repeated in tandem, and transposable elements (TEs) interspersed throughout the genome. In this work we have revealed a completely new principle of satDNA organization in respect to the generally accepted paradigm that satDNAs typically form long arrays of monomers, composing heterochromatic chromosomal compartments. We have identified complete inventory of satDNAs, the satellitome, of the invasive Pacific oyster Crassostrea gigas, consisting of 52 satDNAs. While heterochromatin in this species is extremely scarce, satellitome analysis disclosed novel and unusual, highly scattered arrangement of relatively short satDNA arrays across the whole genome. The inspection of the organizational forms of the most abundant satDNAs displayed their association with constitutive parts of Helitron TEs. In addition, Helitronrelated satDNAs exhibit an advantage in the number of chromosomes occupied, indicating that these TEs are a significant factor in their genome-wide propagation, as well as in forming of genome architecture of C. gigas.

140 Congress of the Croatian Society of Biochemistry and Molecular Biology